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Abstract

There has been much debate over the past few years
about the practice of moving traditional user-space
applications, such as web servers, into the kernel
for better performance. Recently, the user-space
pserver web server has shown promising perfor-
mance for delivering static content. In this paper
we first describe how we augmented the pserver to
enable it to serve dynamic content. We then evalu-
ate the performance of the userver and the kernel-
space TUX web server, using the SPECweb99
workload generator under a variety of static and
dynamic workloads. We demonstrate that the gap
in the performance of the two servers becomes less
significant as the proportion of dynamic-content re-
quests increases. In fact, for workloads with a ma-
jority of dynamic requests, the userver outperforms
TUX. We conclude that a well-designed user-space
web server can compete with an in-kernel server
on performance, while retaining the reliability and
security benefits that come from operating in user
space. The results presented in this paper will help
system developers and administrators in choosing
between the in-kernel and the user-space approach
for web servers.

1 Introduction

The demand for web-based applications has grown
rapidly over the past few years, which has moti-
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vated the development of faster and more efficient
web servers. High-performance web servers need
to multiplex between thousands of simultaneous
connections without degrading the performance.

Many modern web applications require the gen-
eration of dynamic content, where the response to
a user request is the result of a server-side com-
putation. Dynamic content creation allows web
pages to be personalized based on user prefer-
ences, thereby enabling a more interactive experi-
ence for the user than that possible with static-only
content. On-the-fly response generation also pro-
vides a web interface to the information stored in
databases. Dynamic requests are often compute-
bound [1] and involve more processing than static-
content requests. The on-demand creation of con-
tent can significantly impact the scalability and the
performance provided by a web server [1, 2, 3].

Various techniques have been investigated to im-
prove the performance of web servers. These in-
clude novel server architectures [4, 5] as well as
modifications to operating system interfaces and
mechanisms [6, 7, 8, 9, 10, 11]. An emerging trend
has seen web servers being moved into the kernel
for better performance. TUX [12] (now known
as Content Accelerator) is a kernel-space web
server from Red Hat. By running in kernel-space,
TUX avoids the overheads of context switching
and event notification, and implements several op-
timizations to reduce redundant data reads and
copies. TUX supports the delivery of both static
and dynamic content.

Initial research has indicated that kernel-based
web servers provide a significant performance ad-
vantage over their user-space counterparts in the
delivery of static content, and the in-kernel TUX
web server has been shown to be nearly twice as
fast as the best user-space servers (11S on Windows



2000 and Zeus on Linux) [13]. In this paper we
revisit the kernel-space versus user-space debate
for web servers. In particular, we expand it to in-
clude dynamic content workloads. Recent research
has shown that a significant proportion of work-
loads in real-world web sites consists of dynamic
requests [1, 14], with Arlitt et al. [1] reporting that
over 95% of the requests in an e-commerce web
site are for dynamic content.

Recently, the user-space userver [15] web server
has shown promising results that rival the per-
formance of TUX on certain static-content work-
loads [16]. Prior to our work, the userver did not
have the ability to handle dynamic requests. We
first demonstrate how to augment the userver to
enable it to serve dynamic content. We then com-
pare the performance of the userver and TUX (the
fastest reported in-kernel web server in Linux) un-
der a variety of static and dynamic workloads. We
demonstrate that the gap in the performance of the
two servers becomes less significant as the propor-
tion of dynamic-content requests increases. Fur-
ther, we show that for workloads with a majority
of dynamic requests, the userver can outperform
TUX. Based on the results of our experiments, we
suggest that a well-designed user-space web server
can compete with an in-kernel server on perfor-
mance, while retaining the reliability and security
benefits that come from operating in user space.

The rest of this paper is organized as follows:
Section 2 provides additional background informa-
tion and summarizes some of the related work. In
Section 3 we present an overview of various ap-
proaches for supporting the delivery of dynamic
content in web servers, and describe how we aug-
mented the pserver to handle dynamic requests.
Section 4 includes a detailed description of our ex-
perimental environment, methodology and work-
loads. In Section 5 we present the results of our
experiments and analyze them. In Section 6 we
summarize our findings, discuss their implications
and outline some ideas for future work.

2 Background and Related

Wor k

Modern web servers require special techniques to
handle a large number of simultaneous connec-
tions. In order to understand the performance char-
acteristics of web servers, it is important to con-

sider the steps performed by a web server in han-
dling a single client request. Figure 1, due to Brecht
et al. [16], illustrates this process.

1. Wait for and accept an incoming network
connection.

2. Read the incoming request from the net-
work.

3. Parse the request.

4. For static requests, check the cache and
possibly open and read the file.

5. For dynamic requests, compute the result
based on the data provided in the request
and the information stored at the server.

6. Send the reply to the requesting client.

7. If required, close the network connection.

Figure 1. Steps performed by a web server to pro-
cess a client request.

Many of the steps in the figure can block due
to network or disk 1/0. A high-performance web
server has to handle thousands of such requests si-
multaneously without degrading the performance.
Different server architectures [4, 5] have been pro-
posed to handle this problem and are summarized
by Pai et al. [4]. An event-driven approach is
often implemented in high-performance network
servers to multiplex a large number of requests over
a few server processes. Using an event notifica-
tion mechanism, such as the sel ect system call,
the server identifies connections on which forward
progress can be made without blocking, and pro-
cesses only those connections. By using just a
few processes, event-driven servers avoid exces-
sive context-switches required by the thread- or
process- per-connection approach taken by multi-
threaded or multi-process servers like Apache [4].

Other researchers have suggested modifications
in operating system interfaces and mechanisms for
efficient notification and delivery of network events
to user-space servers [6, 7, 8, 17], reducing the
amount of data copied between the kernel and the
user-space [10], reducing the number of kernel-
boundary crossings [9], and a combination of the
above [11].

In light of the considerable demands placed on
the operating system by web servers, some re-
searchers have sought to improve the performance



of user-space web servers by migrating them into
the kernel. By running in the kernel, the cost of
event notification can be minimized through fewer
kernel crossings, and the redundant copying and
buffering of data in the user-space application can
be avoided. The web server can also implement
optimizations to take advantage of direct access to
kernel-level data structures. In particular, a closer
integration with the TCP/IP stack, the network in-
terface, and the file-system cache is possible.

Following an in-kernel implementation of the
Network File System (NFS) server in Linux,
two Kkernel-space web servers were proposed.
kHTTPd [18] runs in the kernel as a module and
handles only static-content requests. TUX [12] is a
kernel-based high-performance web server with the
ability to serve both static and dynamic data. It im-
plements several optimizations such as zero-copy
parsing, zero-copy disk reads, zero-copy network
writes, and caching complete responses in the ker-
nel’s networking layer to accelerate static content
delivery. By providing support for modules that
generate dynamic content and mass virtual hosting,
TUX is pitched as a high-performance replacement
for traditional user-space web servers.

Joubert et al. [13] demonstrated that the best
performing user-space web servers, IIS on Win-
dows 2000 and Zeus on Linux, are about two times
slower than TUX on the SPECweb96 benchmark.
They also reported that TUX is more than three
times faster than the popular Apache web server
and provides better performance than kHTTPd.
However, their paper only deals with static-content
requests and non-persistent (HTTP 1.0) connec-
tions. In this paper, we update their kernel ver-
sus user-space comparison on Linux by evaluat-
ing the performance of the in-kernel TUX web
server with the event-driven, user-space userver
using SPECweb99 workloads, which include both
static and dynamic content requests, and HTTP 1.1
persistent connections. The userver has recently
shown promising results that compare favourably
against the performance of TUX on completely
cached static workloads [16]. By implementing
support for dynamic requests in the userver we
broaden the comparison of user-space and in-kernel
web servers to include dynamic as well as out-of-
cache (disk-bound) static workloads.

While the delivery of static content is a simple
process, the generation of dynamic content requires
server-side computation, which can affect the scal-

ability and the performance of a web server [2, 3].
Our hypothesis was that since the generation of dy-
namic content is CPU-bound [1], processing these
requests in the kernel might not prove to be as ad-
vantageous as the case with static-content delivery.
Recent workload-characterization studies by Arlitt
et al. [1] and Wang et al. [14] report that a signifi-
cant proportion of the requests handled by modern
e-commerce web sites are for dynamic content. To
our knowledge, no studies examining the relative
benefits of the user-space versus kernel-space ap-
proach for web servers using workloads containing
dynamic-content requests have been published, and
our work attempts to fill this void.

3 Implementing Dynamic Con-
tent Support in the userver

Prior to this paper, the pserver did not support
the delivery of dynamic content. In this section,
we describe how we modified it to support dy-
namic requests for evaluation against TUX on the
SPECweb99 benchmark. First we provide a brief
overview of existing dynamic content generation
mechanisms.

The Common Gateway Interface (CGI) is a stan-
dard for running external programs which gener-
ate dynamic content from web servers. Whenever
a server receives a dynamic request, it creates a
new process to handle the request and uses the CGI
specification to interact with that process. After the
dynamic content has been generated, the external
process passes the results to the web server and ter-
minates. Launching a new process is an expensive
operation in terms of system resources. The CGI
approach has been identified as having poor scala-
bility due to the process-creation overhead for ev-
ery request [19, 20].

FastCGl or Servlets offer an improvement over
CGI by using a pool of persistent processes (or
threads) to handle dynamic requests. The processes
that generate dynamic content are persistent in that
they are not terminated after every request, but are
reused for later requests. The web server does not
launch a new process for every dynamic request
but utilizes an existing process from the pool to
generate content. A FastCGI or Servlet-like mech-
anism reduces the process-creation overhead and
allows resources such as database connections to
be shared between different dynamic-content han-



dlers. A related dynamic content generation mech-
anism called templating is used in PHP and Java
Server Pages, and involves embedding a scripting
or a programming language in HTML to generate
request-specific responses. However, both the CGI
and FastCGl-like approaches involve the overhead
of Inter-Process Communication between the web
server and the external processes while handling
each dynamic request.

Various server extensions have been proposed
to minimize the inter-process communication over-
heads. Web servers such as 1IS provide APIs
which allow dynamic-content generation opera-
tions to run as part of the main server process.
The extension API approach involves the devel-
opment of modules that use published server in-
terfaces to handle particular types of dynamic re-
quests. Most high-performance web servers, in-
cluding TUX, have APIs to allow modules to use
the services of the web server to generate dynamic
content.

Modules responsible for dynamic-content gener-
ation can be loaded statically or dynamically (on-
the-fly) by the web server. Dynamic loading can
be conceptually viewed as follows (adapted from
Millaway and Conrad [20]): the first time a user
module is requested in a URI or when the server
starts up, it loads the corresponding shared object
(using a function similar to dl open), and obtains
an entry point (typically a function pointer) into the
module (using a function similar to dl sym). The
module communicates with the web server using
published APIs. The server can pass on the HTTP
requests to the appropriate module by maintaining
a mapping between the function pointer provided
and the module name. TUX provides an interface
for the generation of dynamic content by trusted
modules, which can be dynamically loaded. Lever
et al. [21] describe in detail how support for user
modules is implemented in TUX.

Since the server extension API approach places
maximum emphasis on high performance, we have
developed support for static modules in the userver.
In our implementation, modules responsible for
dynamic-content generation have to be compiled
and statically linked with the pserver. Dynamic re-
quests are delegated by the userver to an appropri-
ate module, using a procedure similar to the one
described above, which then generates and deliv-
ers the content. In the future, we intend to imple-
ment support for dynamic loading of modules with

a cleaner API in userver. Note that the results of
our experiments are not affected by the static or dy-
namic loading of modules.

For TUX, we use a freely available user-space
module for handling the dynamic requests re-
quired for the SPECweb99 benchmark [22]. Our
module for handling SPECwebh99 requests in the
pserver borrows heavily from this TUX module,
with the TUX APIs replaced by those specific to
the pserver. By using a common code base for
the modules in TUX and the userver, we expect
to eliminate any differences in performance due to
different SPECweb99 request-handler implemen-
tations, thereby providing a truer comparison be-
tween in-kernel and user-space web servers for the
benchmark’s dynamic requests.

4 Experimental Environment

All experiments are conducted in an environment
consisting of 8 client machines and a server con-
nected via two full-duplex Gigabit Ethernet links.
All client machines have 550 MHz Pentium 111 pro-
cessors, 256 MB of memory and run the 2.4.7-10
Linux kernel. The server is a 400 MHz Pentium Il
machine with 512 MB of memory and a 7200 RPM
IDE disk, and runs Red Hat Linux 8 with the 2.4.22
kernel. Since the server has two network cards,
we avoid network bottlenecks by partitioning the
clients into two subnets. The first four clients
communicate with the server’s first Ethernet cards,
while the remaining four use a different IP address
linked to the second Ethernet card. This client-
server cluster is completely isolated from other net-
work traffic. In order to ensure that we are able
to generate sufficient load to drive the server with-
out letting the clients become a bottleneck, we use
the more powerful machines as our clients. For
all our experiments the server kernel is run in uni-
processor mode.

41 SPECweb99 Workload Generator

We evaluate the performance of the user-space
pserver against the in-kernel TUX web server us-
ing the SPECweb99 workload generator.

The SPECweb99 benchmark [23] has become
the de-facto tool for web server performance eval-
uation in the industry [24]. Nahum [24] exam-
ines how well SPECweb99 captures real-world



web server workload characteristics such as request
methods, request inter-arrival times, and URI pop-
ularity. Detailed specifications of the benchmark
can be found at the SPECweb99 web site [23, 25].
The SPECweb99 workload generator uses multi-
ple client systems to distribute HTTP connections
made to the web server. The number of simul-
taneous connections is fixed for the duration of a
SPECweb99 iteration. Each connection is used to
make HTTP requests to the server according to the
predefined workload.

The SPECweb99 clients can create workloads
containing both static-content and dynamic-content
requests. The model for dynamic content in
SPECweb99 is based on two prevalent features of
commercial web servers: advertising and user reg-
istration [23]. A portion of SPECweb99 dynamic
GET requests simulate ad rotation in a commer-
cial web site, where the ads appearing on a web
page are generated and rotated on-the-fly based on
the preferences of the user tracked through cook-
ies. The dynamic POST requests in SPECweh99
model user registration at an ISP site, where client
information is passed to the web server as a POST
request, and the server is responsible for storing the
data in a text file.

SPECweb99 specifies four classes of dynamic
requests: standard dynamic GET, dynamic GET
with custom ad rotation through cookies, dynamic
POST, and CGI dynamic GET [23]. Since the scal-
ability problems of CGI are well-documented [19,
20], we do not use CGI dynamic GET requests
in any of our experiments. The workload mix in
SPECweb99 can be configured to vary the propor-
tion of the type of requests (static or dynamic), the
HTTP method (GET or POST), and version (1.0 or
1.1) used. While we experimented with a variety of
workload mixes involving both static and dynamic
workloads, we report only some of the most repre-
sentative results in this paper.

4.2 Methodology

Each experiment involves a distinct SPECweb99
workload mix. A workload mix is repeated for both
of the web servers. Note that we do not use the
‘maximum number of conforming simultaneous
connections’ performance metric specified by the
SPECweb99 benchmark because it describes the
behaviour of the web server at a single data point.
Instead, we use the throughput reported for suc-

cessful HTTP requests as the number of simulta-
neous connections is increased as our performance
metric. Consequently, our results do not comply
with the reporting guidelines of the SPECweb99
benchmark. However, we believe that our perfor-
mance metric provides a better understanding of
web server behaviour under varying loads, giving
us a range of data points so that we can compare
web server performance under light, medium and
heavy load.

Each experiment consists of a series of data
points, where each data point corresponds to a
SPECweb99 iteration where the number of simul-
taneous connections attempted is fixed. Note that
the number of simultaneous connections attempted
is not necessarily equal to the number of simulta-
neous connections established. Each iteration con-
sists of one minute of warm-up time and two min-
utes of actual measurement time. The warm-up
time between successive data points eliminates the
cost of dynamically loading modules and allows
various system resources such as the state of socket
descriptors to be cleared from previous tests. Prior
to running experiments, all non-essential services
such as sendmail, dhcpd, and cron were shutdown
to prevent these daemons from confounding the
experimental results. The results are depicted us-
ing graphs where the horizontal axis represents the
number of simultaneous connections requested and
the vertical axis shows the server throughput.

The size of the file set is determined by the num-
ber of simultaneous connections generated by the
SPECweb99 workload generator and is computed
using the formula described in [25]. The file set
size varies from 1.7 GB for 500 simultaneous con-
nections to 3.3 GB for 1000 simultaneous connec-
tions to 4.8 GB for 1500 simultaneous connections,
and the file set cannot be completely cached in
memory.

43 TheWeb Servers

We use the in-kernel TUX (kernel module version
2, user-module version 2.2.7) and pserver 0.4.5 in
our experiments.

In the interest of making fair and scientific com-
parisons, we carefully configured TUX and pserver
to use the same resource limits. The maximum
number of concurrent connections is set to 15,000
for TUX as well as the userver. Logging is disabled
in both the servers. The dynamic content modules



in both the pserver and TUX use the sendfil e
system call, which enables quick data transfer be-
tween file and socket descriptors. The Linux kernel
versions that we examined (2.4.22, 2.6.1) silently
limit the accept queue backlog set by applications
(through the | i st en system call) to 128. By de-
fault, TUX bypasses this kernel-imposed limit in
favour of a much larger value, viz., 2048. We
changed the accept queue backlog in TUX to 128 to
match the value imposed by the kernel on the user-
space pserver. While we could have recompiled the
kernel to allow the userver to use an accept queue
backlog of 2048, we opted not to use this approach
because a large number of systems currently oper-
ate with the accept queue limit of 128.

For the pserver we use the Accept-Inf op-
tion [16] while accepting new connections, which
causes the server to consecutively accept all cur-
rently pending connections, and the sel ect sys-
tem call as the event notification mechanism.
Brecht et al. have demonstrated that using these
two options the pserver can provide high perfor-
mance [16]. The userver relies on the file sys-
tem cache for caching static files, but the size of
the available memory (512 MB) is small compared
to the size of the file set used in each data point
in our experiments. TUX uses a pinned memory
cache for accelerating the delivery of static content,
along with a number of other high-performance op-
timizations such as zero-copy parsing, zero-copy
disk reads and zero-copy network writes.

There is one major limitation to the current han-
dling of requests in the userver. Some system
calls can block due to the lack of support for
non-blocking or asynchronous disk reads in Linux.
Some system calls responsible for writing dynam-
ically generated content to the network can also
block in our implementation of dynamic content
support in the pserver. The equivalent disk read
and network writes in TUX are non-blocking be-
cause TUX uses an architecture similar to that of
Flash [4] to asynchronously manage those opera-
tions [21]. We address this performance problem in
the pserver by using multiple processes. Note that
each pserver process behaves in event-driven fash-
ion and multiplexes a number of connections using
the sel ect system call. All the userver processes
listen for connections on the same port, share all
the machine resources, and depend on the operating
system for the distribution of work. The advantage
of using multiple processes kicks in only when one

of them is suspended due to a disk read or network
write, and the operating system can schedule an-
other process that is ready to run. The TUX user
manual recommends that the number of worker
threads used in the server should not be greater than
the number of CPUs available [12]. Since we use
a single CPU for the experiments, we set the num-
ber of worker threads in TUX to one. By running
some experiments with more than one TUX worker
thread, we verified that a single worker thread re-
sults in the best performance for TUX for our static,
dynamic and mixed workloads. Note that in addi-
tion to the worker thread, TUX uses a pool of ker-
nel threads to obtain new work and asynchronously
handle disk 1/0 tasks [21].

5 Reaults

Our first experiment involves a static-only work-
load (with no dynamic requests), which can be seen
as a yardstick against which we evaluate our later
workloads that contain a varying proportion of dy-
namic requests. Note that previous studies com-
paring in-kernel and user-space web servers have
concentrated on static workloads that can be com-
pletely cached in memory. In comparison, the static
workload used in our experiment is disk-bound.
Figure 2 illustrates the relative performance of the
pserver with a single process (labelled ‘userver-1-
process’), the userver running 16 event-driven pro-
cesses (labelled “userver-16-processes’) and TUX.

The servers show similar behaviour up to 300
simultaneous connections. Many real-world web
sites experience loads lighter than this and the neg-
ligible difference in the performance provided by
the servers would tilt the scales in favour of the
pserver, which offers the security and reliability
benefits of running in the user-space. However,
large commercial and informational web sites of-
ten have to handle a significantly higher number
of concurrent connections. As the load increases,
TUX provides considerably higher throughput than
the pserver. The gap in the peak throughput (at
700 simultaneous connections) of the 16-process
pserver and TUX is 40%. Past 700 simultaneous
connections, the throughput of both servers deteri-
orates, and the gap between the two becomes as
large as 61% at 1100 simultaneous connections.
Although this difference is significant, it is a lot
smaller than previously-reported results, where the
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Figure 2: 100% Static Workload Performance: userver vs. TUX

kernel-space TUX web server was shown to be
almost twice as fast as the best user-space web
server [13].

Using 16 processes does improve the perfor-
mance of userver, helping it achieve higher peak
throughput than the single-process pserver. With a
single process, the userver is brought to a standstill
if a disk-read operation blocks, but with 16 pro-
cesses even if some of them are blocked, the oper-
ating system can schedule a process that is ready
to run allowing the server to continue processing
requests. It should be noted that using too many
processes can actually inhibit the performance due
to excessive context switches and high scheduling
overhead. For the static workload using more than
16 processes resulted in a drop in performance.
These results have been left out to reduce clutter
in the graphs.

We now move to the evaluation of TUX and the
pserver under a workload consisting exclusively of
dynamic-content requests. For this experiment we
use the default SPECweb99 mix for dynamic re-
quests (without dynamic CGI GET requests, as ex-
plained earlier), which comprises of 42% dynamic
GET, 42% dynamic GET with cookies and 16% dy-
namic POST requests. The results of this exper-
iment appear in Figure 3. Note that using more
than 8 processes in the pserver for this workload
resulted in degradation in performance due to ex-

cessive content-switching.

We can see that the in-kernel TUX web server
is not as effective in the delivery of dynamic con-
tent and is outperformed by the pserver with 8 pro-
cesses. The gap in their peak throughput (at 500
simultaneous connections for TUX and 700 simul-
taneous connections for the pserver) is 13%. The
pserver with 8 processes outperforms TUX by as
much as 42% at the extreme points in the gap at
1300 simultaneous connections.

For the dynamic requests workload, using mul-
tiple processes impacts the performance of the
pserver significantly, the peak throughput of the
pserver with 8 processes is 29% higher than that
of the single-process userver. We used the vim
st at andsar utilities to gather information about
system load activity at 500 simultaneous connec-
tions. The statistics indicate that the userver us-
ing a single process is blocked (reading large files
from disk or writing large responses to the network)
for at least 10% of the duration of the experiment.
On the other hand, with the 8-process userver, we
seldom reach a point where all eight processes are
blocked, so some requests can always be serviced.
If all the server processes are blocked, CPU cycles
are wasted. Indeed for the single-process userver,
the CPU is idle 40% of the time. For dynamic re-
quests which are compute-bound, this translates to
poor performance.
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Figure 3: 100% Dynamic Workload Performance: userver vs. TUX

At this point we reiterate that using more than
one worker thread in TUX resulted in a degradation
in its performance on the workloads that we ex-
amined. Using vist at and sar we verified that
the reduction in TUX’s throughput on workloads
containing dynamic requests is not because it is
blocked more often than the multi-process userver.
In trying to understand why TUX performs poorly
compared to the pserver on the dynamic content
intensive workload we have identified two possible
causes.

One reason for the reduction in the performance
gap in the two servers could be that dynamic re-
quests are processor-intensive [1, 2, 3], hence, the
network and memory optimizations in TUX do not
play as large a role in influencing the overall per-
formance compared to static content delivery.

A second factor in the drop in performance in
TUX might be its strategy for accepting connec-
tions. TUX accepts new connections more ag-
gressively, instead of making forward progress on
already accepted connections [16]. We used the
net st at utility to gather data about TCP queue
drops in both the servers, and found that the num-
ber of queue drops in TUX were an order of mag-
nitude lower than those in the userver. The fewer
queue drops in TUX suggests that it is very aggres-
sive in accepting new connections. In contrast, a

higher queue-drop value implies that the userver
favours the completion of pending work before ac-
cepting new connections. In investigating this fur-
ther we observed that the TUX module that gener-
ates dynamic content consumes less than 25% of
the CPU time on an average. The overall CPU us-
age by TUX, including that by the dynamic content
generation module, is close to 90%. We suspect
that as the number of simultaneous connections in-
creases, TUX spends too much time in trying to
process new connections, instead of allocating suf-
ficient CPU time to its dynamic content generation
module to complete the work on existing connec-
tions. As noted by Brecht et al. [16], there seems
to be room for improvement in the connection-
scheduling mechanism implemented in TUX.

So far we have evaluated TUX and the pserver
on workloads comprising exclusively static or ex-
clusively dynamic requests. However, the work-
load mix seen in most real-world web servers is
usually a combination of dynamic and static re-
quests. The proportion of dynamic to static re-
quests differs based on the type of web site. In the
final set of experiments we use a mixed workload
where the ratio of dynamic to static content is var-
ied. In doing so we attempt to highlight the transi-
tion in the gap in the performance of user-space and
kernel-space web servers as the proportion of dy-
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Figure 5: Mixed Workload (50% dynamic-50% static) Performance: userver vs. TUX
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Figure 6: Mixed Workload (80% dynamic-20% static) Performance: userver vs. TUX

namic requests increases. We use the request mix
described earlier for the dynamic-content portion
of all our mixed workloads. We only show the re-
sults of the userver with 8 processes, which is the
best configuration for the number of processes, in
the following figures.

Our first mixed workload consists of 30% dy-
namic and 70% static requests. This ratio of dy-
namic to static content is recommended by the
SPECweb99 benchmark. The results for this work-
load appear in Figure 4. TUX provides higher
throughput than the userver for this workload.
However, the gap in their performance is much
smaller than that in the static-only workload. The
difference in their peak throughput is 13%, and this
gap becomes as high as 39% at 1500 simultaneous
connections.

Figure 5 shows the results of the experiment
with a workload containing 50% dynamic and 50%
static requests. We can see that the gap in the per-
formance of TUX and the userver is very small.
The difference in their peak throughput is under
4%, and pserver’s throughput is always within 15%
of that provided by TUX.

Our final mixed workload consists of 80% dy-
namic and 20% static requests. Figure 6 illustrates
the results of this experiment. The userver out-
performs TUX at all but one data point. Its peak
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throughput is 3% higher than that of TUX. As re-
ported by Arlitt et al., some e-commerce web sites
do see workloads where the proportion of dynamic
requests is much higher than 80% [1]. For such
web sites using a high-performance user-space web
server such as the userver might be a much better
option.

The results of our experiments suggest that the
performance merits of in-kernel web servers dimin-
ish in the presence of dynamic-content requests.
The gap in the peak throughput of TUX and the
pserver drops from 40% for static-only workloads
to under 4% for a workload with evenly split static
and dynamic requests, and the userver outper-
forms TUX by a small margin as the proportion of
dynamic-content requests increases above 80%.

6 Conclusons and Future

Wor k

The contentious issue of kernel-space versus user-
space web servers has been previously investigated
in the context of completely cached static work-
loads. We have expanded this discussion to cover
dynamic workloads and disk-bound static work-
loads, using two high-performance web servers:



the user-space userver and the kernel-space TUX,
and the SPECweb99 workload generator.

Our results suggest that the improvements to op-
erating systems interfaces such as the sendfi |l e
system call and novel implementation techniques
such as the multi-accept strategy [16], which amor-
tizes the overhead of event notification, have en-
abled the user-space web servers to close in the
gap with their in-kernel counterparts for static con-
tent delivery. However, for predominantly static re-
quests, kernel-space web servers still hold a perfor-
mance advantage, and further improvements to op-
erating system interfaces and mechanisms are re-
quired to improve the performance of user-space
web servers.

In-kernel web servers are not as effective in im-
proving the performance on workloads containing
dynamic requests. As the proportion of dynamic-
content requests increases, the advantages of the
kernel-space web servers diminish. Their perfor-
mance gap with user-space web servers is negligi-
ble if most of the requests are for dynamic content.

Given that in-kernel servers do not provide the
security and reliability benefits of running in user-
space, we recommend that system designers and
administrators of web sites with a significant por-
tion of dynamic content examine the implications
of migrating web servers to the kernel more care-
fully. During the course of our tests, TUX crashed
several times resulting in a kernel panic rendering
the server machine unusable. It is typically easier
to implement crash-recovery mechanisms for user-
space web servers. A crash in the userver can be
fixed by simply restarting it. Configuring TUX to
ensure stable behaviour and high performance is a
non-trivial task, and debugging problems in TUX
requires some familiarity with the kernel.

In the future we intend to compare the userver
with TUX using some of the new operating system
modifications which intend to improve the scala-
bility and performance of user-space web servers.
While the userver can match the performance of
TUX on dynamic content intensive workloads, us-
ing a scalable event notification mechanism such as
epol | oran I/0O mechanism such as asynchronous
1/0 could reduce its performance gap with TUX on
static workloads.
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