Trusted Computing for Protecting Ad-hoc Routing

Michael Jarrett and Paul Ward
Electrical and Computer Engineering, University of Waterloo
mjarrett@ieee.org, pasward @ccng.uwaterloo.ca

Abstract

Ad-hoc networks rely on participation and coopera-
tion of nodes within the network to transmit data to desti-
nations. However, in networks where participating nodes
are controlled by different owners, nodes may choose to
act in their own interest to the detriment of the network.
Current solutions either exact high overheads on the net-
work and nodes, or only operate in specialized scenarios
and prevent a small selection of attacks.

Trusted computing provides additional security in
open computing environments by allowing software to
prove its identity and integrity to remote entities. We pro-
pose using trusted computing to prevent misconfigured or
malicious nodes from participating in the network. We
extend AODV to ensure that only trustworthy nodes par-
ticipate in the network. The protocol exacts less overhead
on the network than many other approaches and can be
applied in a wide variety of scenarios.

Keywords: ad-hoc networks, routing security in ad-hoc
networks, denial of service, trusted computing

1. Introduction

Ad-hoc networks are networks where participating
nodes are responsible for routing traffic. Such networks
are often built using mobile wireless devices, where the
communication range of an individual node is insufficient
to reach all other nodes in the network. Nodes therefore
rely on other nodes to relay traffic to destinations beyond
their transmission range. Central to the concept of mobile
ad-hoc networks are the ideas that nodes are constrained
in computational and battery power, and that the network
lacks universally-available supporting infrastructure.

Some ad-hoc networks only include devices from a
single administrative domain (e.g., a military sensor net-
work). However, often more interesting to civilians is the
opposite scenario, where each device is individually ad-
ministered by its owner - the extreme of multiple adminis-

trative domains. A typical example of such a scenario is a
community wireless mesh network, where houses are each
equipped with wireless nodes capable of forwarding traf-
fic towards a wired Internet connection, and in turn may
also make use of this connection [1].

A difficulty for ad-hoc networks in scenarios involv-
ing multiple administrative domains is that there is very
little motivation for a node of one administrative domain
to honestly participate in the routing of packets for an-
other. A node can act selfishly, transmitting and receiving
traffic over the network, but not establishing routes or for-
warding traffic for other nodes. A node can also act ma-
liciously, purposely drawing traffic to it for modification
or inspection. A node could even corrupt routing informa-
tion in other nodes, effectively disrupting communications
over the wider network.

The area of trusted computing offers a solution.
Trusted computing brings similar security guarantees as
secure coprocessors [2] to standard computing architec-
tures. One key ability of trusted computing is the ability to
perform remote attestation, which allows a device to cer-
tify to a remote entity that it is running some known com-
bination of hardware and software, and that such software
and hardware has not been tampered with. An ad-hoc net-
work could use this to identify which nodes will adhere to
the rules of conduct within the network.

In this paper we describe a system using trusted com-
puting that prevents selfish or malicious nodes from par-
ticipating in the ad-hoc network. Section 2 itemizes some
of the threats against routing in an ad-hoc network. Sec-
tion 3 describes current attempts to solve the issues of
selfish or malicious nodes in ad-hoc networks. Section 4
discusses the basic concepts of trusted computing. Sec-
tion 5 presents our trusted-computing-based solution, and
describes situations where it would be effective. Section 6
compares our approach to existing solutions, demonstrat-
ing the benefits of our technique. Finally, Section 7
presents conclusions and future work.

2. Threats

There are several threats that an unprotected ad-hoc
network faces, falling into two broad categories.

Selfish nodes are nodes which are self-interested:
they have no particular desire to hamper communications
in the network, but are unwilling to commit their own
limited resources to forwarding traffic not directly related
to their own communication. This can be accomplished
by not responding to route requests, responding with un-
favourable route metrics, or even responding accurately
to routing requests but then not forwarding traffic on that
route.

A second threat of a selfish node is that it can ignore
node-level bandwidth restrictions of the network. Experi-
ments have shown that if some nodes use more than their
fair share of bandwidth on the network, that other nodes
will be starved for bandwidth, and network capacity as a
whole will diminish [3].

Malicious nodes act to the detriment of the network
by manipulating routing. Many routing protocols use hop
count as a metric - a node can falsely claim a low hop
count to a destination, enabling it to intercept traffic for
that destination. Node identities are not authenticated,
so a node can claim to be the destination of a route, or,
by switching identities, set up routing loops (despite pro-
tections against such occurrences in most ad-hoc routing
protocols). Finally, a node can erroneously generate error
messages to break formed routes, either as a legitimate
node on that route, or by impersonating a legitimate node.
Several such attacks are discussed by Sanzgiri et al. [4].

3. Current Solutions

Most proposals address either the problem of selfish
nodes (encouraging nodes to participate in routing) or se-
cure routing (ensuring nodes route correctly), but rarely
both. In particular, most protocols used to prevent selfish
nodes assume a underlying secured routing protocol.

One such secure routing protocol is Authenticated
Routing for Ad-hoc Networks [4] (ARAN). In ARAN,
all routing messages are signed using public-key cryptog-
raphy at each hop, and messages which are not validly
signed are dropped. This, combined with requiring the
use of round-trip time as a routing metric, prevents many
forms of attack on the routing infrastructure.

A technique described in the proposal of secure
AODV (SAODV [5]) separates nodes by their relative ‘se-
curity level’, and gives each security level a shared secret
with which to encrypt routing headers. Routes can then be
found which are guaranteed to only travel through nodes
at this security level. Unfortunately, this requires coordi-

nation and trust among all nodes of a particular security
level.

A monitoring system by Marti et al. [6] places a
‘watchdog’ in each node. This watchdog monitors the
next hop of a source route to ensure that the node in fact
forwards packets correctly. If the node misbehaves, the
watchdog sends a warning back to the source, where the
‘pathrater’ module in each node incorporates the knowl-
edge into routing decisions. This may help to avoid routes
through untrustworthy nodes, but does not in any way dis-
courage selfish behaviour. Note that this system cannot
easily work with routing protocols like AODV, since the
technique requires source routing.

Similar to the watchdog approch is the CONFI-
DANT [7] protocol, which presents a detailed architecture
for detecting and reacting to errant nodes. More aggres-
sive than the watchdog proposal, this system works to ac-
tively deny access to the network to errant nodes, giving
selfish nodes motivation to co-operate.

The AD-MIX [8] protocol targets systems where a
node may accept routes but refuse to forward traffic by
encrypting each packet between zero and two times, each
encryption using the public key of another node. The
packet is sent to the node whose key was used for the fi-
nal encryption, which will decrypt it and relay it to the
next point on the route. A node which drops a packet it is
requested to forward risks dropping a packet destined for
itself. This gives incentive to forward packets as well as
providing anonymity and privacy.

Various economic approaches have been proposed to
counter selfish nodes. One, using a virtual currency called
nuglets [9], has the sender pay for transmission, and each
node that forwards the packet takes some portion of this
payment. The node’s nuglet balance must be maintained
by a secure coprocessor. A similar approach [10] by
Hubaux et al. uses base stations in an ad-hoc-extended
cellular network to reward forwarders with real currency
on their bill. It is also a very efficient approach in that it
only uses symmetric cryptography.

4. Trusted Computing

Trusted computing [11] (TC) is a general term used
to describe a set of features in hardware and software to
enhance the security of open computing platforms. An
open computing platform is one in which arbitrary hard-
ware and software can be deployed, and is the more com-
mon configuration for personal computing devices. This
is contrasted with the area of closed computing devices,
such as game consoles, embedded systems, etc., where
only very specific hardware and software combinations
are allowed. The latter provides additional security, since

a malicious user cannot run their own software or hard-
ware on the devices. However, closed computing devices
do not have the flexibility that computer users have come
to appreciate and require.

TC allows for guarantees similar to that of a closed
computing device to be made while still using an open
computing device. TC systems are normally described to
have four key features.

1. Process isolation
2. Secure I/O

3. Sealed storage

4. Remote attestation

Process isolation guarantees that a secure process, in
some literature referred to as a trusted agent, is protected
from inspection or modification by another process. Se-
cure I/O allows this trusted agent to communicate with
hardware without fear of modification or inspection of the
communications channel. Sealed storage allows data to be
stored encrypted to an insecure medium like a hard disk,
while only allowing chosen trusted agents to decrypt it.
The most interesting aspect for our work is that of remote
attestation, which allows a trusted agent to demonstrate to
a remote entity that it, and the platform on which it relies,
has certain properties. Used in combination, these four
features can allow a trusted agent on a device to operate
without interference, and prove that it does so to remote
entities.

Remote attestation combines an assurance that a
trusted computing environment is running, and that the
remote party is communicating with a trusted agent with
particular properties. Most implementations require the
environment loading the trusted agent to calculate a hash
of the executable before loading it into memory [12].
However, more advanced implementations have proposed
attestations with proof of high-level properties of the
agent’s behaviour rather than the exact identity of the soft-
ware binary [13], greatly simplifying the issues of soft-
ware upgrade and interaction of different software brands.

Central to a TC implementation is a trusted module.
This is normally a hardware cryptographic processor, op-
erating similarly to a smartcard. The processor is capa-
ble of performing standard public-key encryption/signing,
symmetric-key encryption, and hashing. It is also capable
of generating and storing private keys such that they can-
not be retrieved by software means. It also allows mea-
surements of system state to be stored securely inside it
and used in reports made in remote attestation.

Trust is extended in layers, with a trusted BIOS per-
forming initial measurements on the system, and tak-
ing measurements of the operating-system loader. The
operating-system loader should, when loaded, have access

to its secure storage and be able to perform remote attesta-
tion based on the measurements made by the trusted mod-
ule. If it is designed for trusted computing, it can then per-
form measurements of the operating system kernel. This
process can continue until there is a set of measurements
that ensure the integrity of all software between a trusted
agent and hardware [14].

These capabilities must be combined with platform
enhancements to support secure I/O and stronger process
isolation. It is generally assumed that most of the software
on the system, including a large portion of the operating-
system services, are not verified by the trusted computing
environment, so the trusted agents must have their mem-
ory and communications protected from interference orig-
inating from other processes on the system.

Remote attestation requires some form of public-key
infrastructure. Each trusted module has a keypair pro-
tected in internal memory. The public component of this
keypair can be verified by a trusted third party (TTP).
This TTP will issue certificates for keys generated by the
trusted module after it verifies the public component of the
internal key. These additional keypairs are also protected
in the trusted module, but allow the user of a TC system
to maintain anonymity by having multiple keypairs avail-
able.

The main operation performed in our protocol is that
of sealed-signing [15], often referred to as quoting. This
operation uses a key within the trusted module to sign
data, but also includes in this signature a nonce and a cho-
sen set of measurements from the platform and software.

The infrastructure required to support trusted com-
puting applications is already widely available. TPM
hardware is already installed in many laptop comput-
ers [16], and will likely become more common in more
computers and devices in the future. Likewise, TC-
enabled bootloaders, Linux kernel support, and support
libraries and applications have already been developed by
the open source community [17]. Upcoming Microsoft
operating system Windows Vista is also expected to sup-
port trusted computing.

5. TC to Protect Ad-hoc Networks

Given the properties of trusted computing described
above, we propose its use in ad-hoc networks to provide
guarantees that nodes can be neither selfish nor malicious.
Our design for this purpose consists of two key compo-
nents. First, we describe how the various software com-
ponents (specifically, the routing agent and the wireless
device driver) must operate in the trusted-computing con-
text. Second, we describe an extension to AODV to take
advantage of the trusted-computing facilities. When we

detail that protocol extension, we will show how the in-
clusion of trusted-computing support within nodes of a
mobile ad-hoc network is used to prevent several forms
of attack.

First, we presume the software and operating-system
components responsible for managing routing in the ad-
hoc network run as a trusted agent. Given this, the
routing agent should be largely standardized, to ensure
that remote nodes can easily verify attestations from it.
This routing agent software has three key responsibilities.
First, it must obey all routing rules of the ad-hoc rout-
ing protocol chosen: it will not attempt to impersonate
any other node, misrepresent any routing metric it reports,
issue invalid error messages, transmit faster than agreed-
upon rate limits, or ignore legitimately-received requests
for a route. Second, it must require an attestation from the
wireless network driver, to verify that the driver will ful-
fill its obligations, listed below. If the trusted agent cannot
verify the driver, it must refuse to participate in the ad-hoc
network. Third, it must monitor reports from the wireless
driver as to the physical wireless device’s performance,
and should metrics drop below a certain threshold, refuse
to participate further in the network.

The driver for the wireless network device has three
key obligations, and must attest to these to the routing
agent. First, it must not have the capability to filter traf-
fic at the driver level when such traffic is received from
a trusted agent. Second, it must communicate with the
physical network device using secure 1/O, to prevent a
fake virtual device from being used. Third, it must main-
tain an accurate record of the device’s performance within
its capability of measurement. If the device fails to trans-
mit, or becomes physically powered down, the driver must
record and report these facts.

We assume for the purposes of this paper that there is
a limited set of trusted third parties which sign the public
keys of each node, and that all nodes trust each of these
signers. However, any public-key infrastructure capable
of asserting trust in a public key for a specific purpose will
suffice, for example the one discussed for ad-hoc networks
by Yi and Kravets [18].

5.1. Protocol

We now describe our enhancements to the Ad-hoc
On-Demand Distance Vector [19] (AODV) protocol to
prevent network abuse by selfish and malicious nodes. We
call this protocol Trusted Computing Ad-hoc On-Demand
Distance Vector (TCAODV). We note, however, that our
techniques could be adapted to design trusted-computing-
based secure protocols using other routing protocols, such
as Dynamic Source Routing (DSR).

Each node uses a public-key certificate stored within
the TPM trusted root for the purposes of routing in an ad-
hoc network. This certificate is broadcast during HELLO
messages. Neighbours receiving this certificate should
verify it through the signature of the issuer, and store it
as the broadcaster’s public key if it is valid. If it is not
valid, it is silently dropped.

When a node A wishes to establish a route to node
B, A will broadcast an RREQ. This is done identically
to AODV, except the entire packet is signed with a sealed
signature by A, using integrity metrics from its routing
module.

A node receiving an RREQ first verifies the signa-
ture, using the key previously received for that node in
a HELLO message, and determines if the measurements
provided are trustworthy. If no such key is available, or
the verification fails for any reason, the packet is silently
dropped. Otherwise, the packet is processed. If the
RREQ’s destination is not the receiving node, and the re-
ceiving node does not have a route to the destination in its
cache, it will forward the RREQ. It first strips off the sig-
nature made by the forwarder, replacing it with its own
signature and integrity measurements. It adds the for-
warder to its routing table as the reverse route to A.

If the receiving node is the destination, or has a
cached route to the destination, it generates an RREP mes-
sage, unicasting it back along the already-established re-
verse route. This operates similarly to the RREQ, in that
each node will sealed-sign the packet with its integrity
metrics. Each node can then verify the signatures of the
forward route and establish the route in the routing table.

Each valid RREP that the source receives corresponds
to an accurately-represented route through trusted nodes
to the destination. However, this alone does not guarantee
that the node will continue to be well-behaved. An un-
trusted device could simply broadcast traffic on the route
once it was established. Therefore, a per-route symmetric-
encryption key is established to ensure that only trusted
nodes along the path can use the route. Part of the process
required for a routing agent to be considered trusted by
other routing agents (and thus, have a signature verified
that is accepted as a trusted routing agent) is that routing
agents must protect the symmetric key from being read by
other processes or revealed to any outside source.

After receiving a RREP, or any time the route be-
tween A and B changes, A will transmit a new packet,
called RKEY, along the route. A randomly generates a
symmetric key and a route identifier, attaches a timestamp,
encrypts them with the public key of the next hop' in the

ISome public-key cryptosystems require encryption to be performed
using a separate keypair to the keys used to sign. If such a system is
used, the ‘public key’ will simply be a pair of public keys, with one valid

route, and sends it along the route to B. The next node
in the route decrypts the key, stores it as the routing key
associated with the route identifier, re-encrypts it with the
public key for the next hop, and relays it. When this key
reaches B, the entire route has knowledge of a symmetric
key for the route.

All traffic sent along the route is encrypted using this
symmetric key. This includes all routing-layer headers,
with the exception of the route ID. When a node receives
traffic to forward, it looks up the route ID, and if it has
a key for that route, decrypts and verifies the headers of
the packet. Should the headers be valid, the packet is
forwarded unmodified. If verification fails, or should the
route ID not be known to the node, the packet is silently
dropped.

Route errors are signalled using the RERR message.
RERR messages are encrypted using the route key, and
transmitted along the route. A node receiving a valid route
error message should discover a new route as described
above, but should attempt to reuse the route key and ID if
possible. An RKEY packet must still be sent along a new
route even if the key is reused, to advise any new nodes of
the key and route ID.

6. Comparison

We present a discussion comparing the basic proper-
ties of TCAODV to existing protocols described in Sec-
tion 3.

6.1. Security Challenges

We propose several properties that we would like to
ensure are true of nodes participating in the ad-hoc net-
work, that covers a variety of selfish and malicious be-
haviour.

1. Routing Participation: Nodes must always partici-
pate in the routing process.

2. Routing Honesty: Nodes must report metrics hon-
estly, present their correct identity, and accurately re-
port link errors.

3. Traffic Forwarding: Nodes must forward traffic as
required by the routing protocol.

4. Bandwidth Allocation: Nodes must not transmit
faster than established bandwidth limits.

5. Confidentiality: Nodes must protect the content and
headers of communication from eavesdropping.

6. Authentication: Nodes must not impersonate an-
other node in the network.

for signing, and one valid for encryption.

11234 |5]|6
TCAODV XX X|X|X|X
ARAN X X
SAR X
Watchdog X|X| X
CONFIDENT X| XX
AD-MIX X X X
Nuglets X X
Cell X X XX

Table 1. Security Challenges Addressed by
Each Protocol

In Table 1 we list the six security challenges identified
above, and which protocols are able to offer some level of
protection for them. Each protocol is only taken in isola-
tion. In some cases multiple protocols could be combined
to address more threats, at the expense of the overhead
of multiple security protocols. We note that our trusted-
computing solution addresses all of the listed threats ef-
fectively. None of the other protocols described can ad-
dress all of these threats on its own concurrently.

6.2. Overhead

While our approach can address a wider selection of
plausible threats than existing protocols, we must examine
the cost of doing so. A security protocol is of limited value
if it covers more threats but does so at prohibitive cost.

We first observe that TCAODV adds the requirement
of a public-key signature operation on each RREQ and
RREP packet transmitted or forwarded, and a signature
verification on each such packet received. The RKEY
adds a public-key encryption and decryption operation for
each node in the route and increases the time required to
establish the route. Each data packet must be encrypted
at the source using symmetric-key cryptography, and de-
crypted at the destination. Each node on the route must
decrypt enough of the packet to verify the packet is au-
thentic. While it might be considered that these crypto-
graphic costs could be overwhelming to an ad-hoc node,
we note that any trusted computing platform must, by its
very nature, have cryptographic hardware as a component,
and therefore the execution time for performing these op-
erations is likely not excessive.

Each routing packet will be significantly larger, by at
least tens of bytes. The size increase of each data packet is
minimal. If all nodes are trusted, the resulting routes are
unaffected by our protocol.

AD-MIX adds at most three public-key encryptions
and decryptions, but does so for every data packet instead

of just routing messages. Furthermore, routes are cho-
sen specifically to be longer than necessary. Additional
routes may occasionally need to be discovered to locate
‘poles.” We therefore believe that our solution is notably
less costly than is AD-MIX.

ARAN has similar costs to TCAODYV, with public-
key operations being required along the established route.

The protocol underlying Nuglets requires each node
to establish a symmetric key when they become neigh-
bours for the first time. This requires several public-
key operations at each meeting of nodes, and could be-
come extremely expensive for a rapidly changing net-
work. However, for a largely static network, this al-
lows symmetric-key cryptography to be used at each node,
which is a far less expensive proposition. Thus, in the dy-
namic case, nuglets is likely more costly than our solution,
while it would be approximately equal in the static case.
Our approach does not suffer from this issue, being equal
in cost whether the network is static or dynamic (subject
to route failure).

SAR and the cellular approach both use pre-
distributed symmetric keys and thus suffer very little over-
head. The SAR approach may additionally increase route
length, but does so by design to avoid forwarding through
nodes that could potentially perform traffic analysis. It
must be noted, however, that while both of these ap-
proaches are potentially less costly than our solution, nei-
ther are feasible in a general ad-hoc network where pre-
distribution of symmetric keys is not possible. Any solu-
tion that resolved this problem of pre-distribution would
likely add the same public-key cost that our solution re-
quires.

6.3. Key Infrastructure Requirements

TCAODV requires a public-key infrastructure (PKI)
capable of verifying that a public key is from a trusted
hardware module. This (or other) infrastructure should
also be able to determine trust in a set of integrity metrics
for a routing module. This is a significantly easier prob-
lem than that of certifying an identity, since the respon-
sibility rests with the hardware manufacturer rather than
end users. Further, the cost is a function of the number of
hardware variations, rather than the number of users, and
thus will be dramatically lower.

The AD-MIX and ARAN protocols both require the
use of public-key cryptography with a PKI capable of es-
tablishing trust between any pair of nodes, which, again,
is a harder trust problem, for the reason noted above. The
nuglets approach uses a secure co-processor, requiring
similar PKI to our system.

The cell-based system avoids the need for a PKI, but
requires a full cell-based infrastructure, and requires the

base station to share a key with each node. This require-
ment is similar to SAR, which requires pre-distributed
shared keys. Neither approach is suitable in the general
case of multiple administrative domains where there may
not be an authority universally trusted to assign these keys.
CONFIDANT does not require significant infrastruc-
ture, but is insufficiently specified on various critical
points, such as the ‘friends’ structure. In particular, we
believe it would require a PKI to resolve these issues.

6.4. Vulnerabilities

TC ad-hoc routing is dependent on the security of
the underlying trusted-computing infrastructure. A node
that is able to compromise a trusted module could use the
keys contained within to act arbitrarily, while still being
trusted by other nodes. The node could misbehave until
such compromise is detected, and key-revocation meth-
ods invoked. The nuglets system has a similar vulnerabil-
ity, with its effectiveness predicated on the security of the
underlying secure coprocessor.

Our approach further relies upon the ability of the
wireless network adapter’s driver to correctly monitor the
performance of the physical transmitter, which even with
secure /O, is not guaranteed if the device can be subtly
modified.

Many proposals have been circulated for the addition
of “owner override” abilities to trusted computing hard-
ware. Such a mechanism would allow a TPM owner to
explicitly choose to report incorrect measurements in a re-
mote attestation. Such a mechanism would be fatal to our
approach, since it would allow a selfish user to pretend to
be trustworthy.

None of the systems can address physical- or
medium-access-control-layer attacks. In particular, if it
is possible (outside the detection of the wireless driver)
to disable transmission, a node could behave selfishly. It
is likely that any such attack is expensive to orchestrate.
Blocking neighbours from transmission is also possible
by broadcasting noise or using the MAC layer to contin-
uously force other nodes to delay transmission. These is-
sues are alleviated somewhat in economic models, since
the node has motivation to cooperate. Monitoring tech-
niques can detect such behaviour, but cannot address it
since it can generally be difficult to detect the true source
of interference.

Monitoring approaches (watchdog, CONFIDANT)
do not effectively address collaborating malicious nodes,
since a monitoring node cannot detect that a collaborating
node was ignoring the misbehaviour of their partner ma-
licious nodes unless it can itself witness the behaviour of
the malicious nodes. Collaboration is not feasible in our
TC-based method.

6.5. Side Effects

TCAODV does not lead to any significant negative
consequences, except for the requirement that only trusted
nodes can take part in the network. By contrast, the
ARAN protocol makes several sacrifices. It requires the
use of round-trip time as the routing metric, tying routing
to the security implementation. This is a significant prob-
lem, as there are several alternative routing metrics that
are more effective in ad-hoc networks. Further, the ability
to cache a route is lost, since the destination itself must
sign each route reply.

The nuglets protocol has difficulty with starvation,
since the mechanism for introducing nuglets to the soci-
ety is not defined, and the loss of packets results in the
nuglets it carries being lost as well. Furthermore, edge
nodes will be starved of nuglets. While starvation is not
as large an issue in the cellular approach where the cur-
rency is backed by money, users may become annoyed if
consistently billed more than peers closer to a base station.

7. Conclusions

By using the security guarantees of trusted comput-
ing, we have proposed an approach to ad-hoc network-
ing that is resistant to many forms of unsocial nodes, in-
cluding selfish nodes which refuse to forward traffic and
nodes that attempt to maliciously manipulate the routing
process. Our routing protocol operates at a very low cost
compared to existing secure techniques, and addresses
many major security challenges that exist in ad-hoc net-
works.

7.1. Future Work

We do not foresee that all computers will be trusted
devices immediately; rather, their deployment will likely
be gradual. We would therefore like to make use of un-
trusted, but honest, nodes in a trusted-computing ad hoc
network. If there is a choice between routing through un-
trusted nodes and not establishing a path, it may well be
worthwhile to allow the node to participate. The proto-
col would have to change to accommodate this. Another
possible avenue would be to examine a mixed trusted-
untrusted network, where untrusted nodes could partici-
pate while monitored by a trusted node.

One issue that is not effectively addressed is that of
physical-layer manipulations. Trusted computing could
also be used to enforce a reputation system, which could
compliment secure routing by giving additional motiva-
tion to nodes to participate.

Finally, an implementation is required to determine
the exact characteristics and overhead of the protocol in
practice. In particular, the interaction of the latencies of
the trusted hardware with routing, and the actual size of
additional data needs to be studied.

References

[1] E. Batista, “Mesh less cost of wireless,” Wired News, Feb.
2003. [Online]. Available: http://www.wired.com/news/
business/0,1367,57617,00.html

[2] “Secure cryptoprocessor,” Wikipedia. [Online]. Available:
http://en.wikipedia.org/wiki/Secure_cryptoprocessor

[3] J. Jun and M. L. Sichitiu, “The nominal capacity of wire-
less mesh networks,” IEEE Wireless Communications,
Oct. 2003.

[4] K. Sanzgiri, B. Dahill, B. N. Levine, C. Shields, and E. M.
Belding-Royer, “A secure routing protocol for ad hoc net-
works,” in proc. IEEE Intl. Conf. on Network Protocols,
Nov. 2002.

[5] S. Yi, P. Naldurg, and R. Kravets, “Security-aware ad-
hoc routing for wireless networks,” in proc. 2nd ACM Intl
Symp. on Mobile ad hoc networking & computing, 2001.

[6] S. Marti, T. J. Giuli, K. Lai, and M. Baker, “Mitigating
routing misbehavior in mobile ad hoc networks,” in proc.
Mobile Computing and Networking, 2000.

[71 S. Buchegger and J.-Y. L. Boudec, “Performance analy-
sis of the CONFIDANT protocol: Cooperation of nodes
— fairness in dynamic ad-hoc networks,” in proc. 3rd
IEEE/ACM Intl. Symp. Mobile Ad Hoc Networking &
Computing (MobiHOC). IEEE, June 2002.

[8] S. Sundaramurthy and E. M. Belding-Royer, “The ad-mix
protocol for encouraging participating in mobile ad hoc
networks,” in proc. 11th IEEE Intl. Conf. Network Proto-
cols (ICNP’03), 2003.

[9] J.-P. Hubaux and L. Buttydn, “Nuglets: a virtual currency
to stimulate cooperation in self-organized mobile ad hoc
networks,” Swiss Federal Institute of Technology, Tech.
Rep. DSC/2001/001, 2001.

[10] N. B. Salem, L. Buttyén, J.-P. Hubaux, and M. Jakobsson,
“A charging and rewarding scheme for packet forward-
ing in multi-hop cellular networks,” in proc. MobiHoc 03,
June 2003.

[11] “Trusted computing,” Wikipedia: The Free Encyclopedia.
[Online]. Available: http://en.wikipedia.org/wiki/Trusted_
computing

[12] P. England, B. Lampson, J. Manferdelli, M. Peinado, and
B. Willman, “A trusted open platform,” IEEE Computer,
July 2003.

[13] V. Haldar, D. Chandra, and M. Franz, “Semantic remote
attestation - a virtual machine directed approach to trusted
computing,” in proc. USENIX Virtual Machine Research
and Technology Symposium, May 2004.

[14] P. England and M. Peinado, “Authenticated operation of
open computing devices,” in proc. 7th Australasian Conf.
on Information Security, Aug. 2002.

[15]

[16]

[17]

[18]

[19]

TCG Specification Architecture Overview, Version 1.2 ed.,
Trusted Computing Group, Apr. 2004.

J. Burt and M. Hachman, ‘“National semiconductor
unveils ’trusted’ chip for pcs,” eWeek, Sept. 2004.
[Online]. Available: http://www.eweek.com/article2/0,
1759,1646895,00.asp

“Ols: Linux and trusted computing,” LWN, July 2005.
[Online]. Available: http://lwn.net/Articles/144681/
S.Yiand R. Kravets, “Practical pki for ad hoc wireless net-
works,” University of Illinois at Urbana-Champaign, Tech.
Rep. UIUCDCS-R-2002-2273, Aug. 2001.

RFC 3561 - Ad hoc On-Demand Distance Vector (AODV)
Routing, Network Working Group, July 2003.

